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a b s t r a c t

In this study we present approximate analytical expressions for estimating the variation in multipole
expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric
(3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies
which focused on the role of apertures to fields within the traps, here too, the analytical expression we
develop is a sum of two terms, An,noAperture, the multipole expansion coefficient for a trap with no apertures
and An,dueToAperture, the multipole expansion coefficient contributed by the aperture. An,noAperture has been
obtained numerically and An,dueToAperture is obtained from the n th derivative of the potential within the
trap.

The expressions derived have been tested on two 3D geometries and two 2D geometries. These include
the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap
(LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A2 to A12,
estimated by our analytical expressions, were compared with the values obtained numerically (using the
boundary element method) for aperture sizes varying up to 50% of the trap dimension.
In all the plots presented, it is observed that our analytical expression for the variation of multipole
expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the
range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate
of the deviation of our values from those obtained numerically for each multipole expansion coefficient,
are seen to be largely in the range of 10–15%. The leading multipole expansion coefficient, A2, however, is
seen to be estimated very well by our expressions, with most values being within 1% of the numerically

larger
determined values, with

. Introduction

In this third study (after Chattopadhyay et al. [8] and Chat-
opadhyay and Mohanty [7]) we continue to focus our attention on
pertures in the electrodes of RF ion traps. Here, we derive approx-
mate analytical expressions for multipole expansion coefficients

s a function of the size of the apertures in the electrodes. In this
tudy, we have considered two axially symmetric (3D) and two
wo-dimensional (2D) ion traps.1 The two 3D-geometry ion traps
nvestigated include the quadrupole ion trap, QIT [18,14], and the

∗ Corresponding author at: Supercomputer Education and Research Centre, Indian
nstitute of Science, Bangalore 560012, India. Tel.: +91 80 2293 2979;
ax: +91 80 2360 0135.

E-mail addresses: madhuri@isu.iisc.ernet.in (M. Chattopadhyay),
mohanty@serc.iisc.ernet.in (A.K. Mohanty).
1 As pointed out in Chattopadhyay et al. [8], in this paper too the descriptor 3D

efers to traps with axial symmetry, and 2D to traps with planar symmetry. It should
e noted however, that the fields in both these traps are three-dimensional. In
ur analysis we use the symmetry to simplify the analysis and carry out a two-
imensional analysis of these traps.

387-3806/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.ijms.2010.06.030
deviations seen for the QIT and the LIT for large aperture sizes.
© 2010 Elsevier B.V. All rights reserved.

cylindrical ion trap, CIT [12,24]. The two 2D-geometry ion traps
include the linear ion trap, LIT [4], and the rectilinear ion trap, RIT
[17]. In these ion traps, apertures (holes in the case of 3D and slits
in the case of 2D) are machined in appropriate electrodes for the
entry of electrons and the collection of destabilized fragment ions.

Multipole expansion coefficients [3] influence trap performance
as well as ion dynamics in the trap. Their influence in the study of
trap performance occurs on account of the appearance of the lead-
ing coefficient, A2, in the numerator of the expression for the two
Mathieu parameters a and q (e.g. [2]). These two parameters deter-
mine, for instance, voltages of ion destabilization in mass selective
boundary ejection experiments [21] and the secular frequency of
the ion. The influence of multipole expansion coefficients on ion
dynamics can be seen in the studies of Franzen et al. [10], Sudakov
[22], Abraham et al. [1] and Rajanbabu et al. [19,20]. In these stud-
ies higher order multipole expansion coefficients appearing in the

governing equation of ion motion were used to understand ejection
dynamics in both mass selective boundary ejection experiments as
well as in resonance ejection experiments.

Currently, multipole expansion coefficients are routinely com-
puted using numerical techniques embedded in simulation

dx.doi.org/10.1016/j.ijms.2010.06.030
http://www.sciencedirect.com/science/journal/13873806
http://www.elsevier.com/locate/ijms
mailto:madhuri@isu.iisc.ernet.in
mailto:amohanty@serc.iisc.ernet.in
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ackages such as ISIS [13], SPQR [16,15], ITSIM [5] and SIMION [9].
t is also easy to obtain, numerically, the variation in the multipole
xpansion coefficients with variation in the size of the apertures in
he electrodes. What is not readily obtained in such an approach is
n insight into the nature of the contribution of the aperture size in
he electrodes to the multipole expansion coefficients. This insight
an be provided by analytical expressions which incorporate the
perture size. The development of such analytical expressions is
he motivation of the present paper.

Following the method adopted in our earlier studies [8,7], which
sed the theory of apertures on infinite, thin ground planes, here,
oo, we superpose the multipole expansion coefficients obtained
n a trap with no apertures, to the multipole expansion coeffi-
ients obtained from the successive differentiation of the potential
xpression due to apertures. Thus, we write,

n = An,noAperture + An,dueToAperture, (1)

here An,noAperture is the n th multipole expansion coefficient in
trap with no apertures and An,dueToAperture is the n th multi-

ole expansion coefficient derived from the n th derivative of the
otential or field expression due to apertures. An,noAperture, obtained
umerically only once for a trap of a specified geometry, is the
ultipole expansion coefficient in a trap with no apertures in the

lectrodes. The expressions we present in the study are for ion traps
aving electrodes with finite thickness.

Although the validity of this approach has been demonstrated
or the computation of on-axis and off-axis fields, the use of this
pproach in the context of obtaining multipole expansion coeffi-
ients needs to be tested. This is because we have used successive
ifferentiation of the potentials for obtaining higher order multi-
ole expansion coefficients.

We add a caveat in regard to the contents of our paper. Having
btained an analytical expression for multipole expansion coef-
cients, we test it against numerically obtained values and not
gainst the fields it predicts. This is because testing for accuracy of
he fields it predicts requires an entirely different exercise involving
iscussions, such as, the number of terms of multipole expansion
oefficients that needs to be considered. This is beyond the scope
f the present work. In view of this we have not undertaken any
onvergence studies.

In the next section, a brief description of the numerical meth-
ds used in this paper for computing the multipole expansion
oefficients is provided. Section 3 presents the analytical approxi-
ation of multipole expansion coefficients with different hole radii

n axially symmetric 3D traps, and Section 4 presents the expres-
ions of multipole expansion coefficients with different slit widths
n top-bottom and left-right symmetric 2D traps. The analytically
stimated multipole expansion coefficients are compared with the
umerically computed multipole expansion coefficients for vary-

ng the aperture dimension from 0 to 50% of the trap dimension in
ection 5. Section 6 provides a few concluding remarks.

. Numerical computations

The electrical potentials and multipole expansion coefficients
or any ion trap of known geometry, can be computed numerically
y using the boundary element method (BEM). The details of the
EM used in this study have already been reported in Tallapragada
t al. [23] for the 3D traps and in Krishnaveni et al. [11] for the 2D
raps.
In the present study, multipole expansion coefficients have been
umerically computed for (1) obtaining An,noAperture, the multipole
xpansion coefficients in a trap with no apertures, and (2) for the
urpose of verifying multipole expansion coefficients estimated by
ur theory.
Fig. 1. (a) Schematic of an infinite thin metal plate with fields EL ẑ and EU ẑ on either
side, ẑ being the unit vector in the z direction, and (b) the same plate with a circular
hole of radius a.

3. Multipole expansion coefficients in 3D traps

3.1. Multipole expansion coefficients from the potential

In an axially symmetric ion trap, the potential U (in the spherical
coordinates) can be expressed as

U = ˚

∞∑
n=0

An

(
r

L

)n

Pn(cos �). (2)

where ˚ is the applied potential difference between the ring and
the endcaps. In our simulations, we have grounded the endcap elec-
trodes and applied unit positive potential to the ring electrode. An

are the multipole expansion coefficients, and r and � are spherical
polar coordinates. Pn represents the Legendre polynomial of the n
th degree and L is the normalizing length. In our simulations, we
have chosen L to be the inner waist radius r0 of the ion trap. Due to
axial symmetry, U does not depend on the � coordinate. On the z-
axis, r = | z |, Pn(cos �) = (sign z)n, and thus U = ˚

∑∞
n=0Anzn/Ln. The

multipole expansion coefficient, An, can be obtained from the n th
derivative of U with respect to z, and is written as

An = Ln

˚

1
n!

∂nU

∂zn

∣∣∣∣
z=0

(3)

when the potential U is available as an analytical expression as a
function of z. In our present study, we use the expression for U
derived in Chattopadhyay and Mohanty [7] which has the form

U = UnoHole + UdueToHole. (4)

where UnoHole is the potential in the trap with no holes and
UdueToHole is the contribution of the hole to the potential within
the trap. Further, we propose that the multipole expansion coeffi-
cient of the n th degree, An, also be expressed in the same form as
Eq. (4) as

An = An,noHole + An,dueToHole. (5)

where An,noHole is the multipole expansion coefficient in a trap with
no holes in electrodes, and

An,dueToHole = Ln

n!˚

∂nUdueToHole

∂zn

∣∣∣∣
z=0

, (6)

In Eq. (5), An,noHole needs to be computed numerically for the trap
under investigation.
3.2. Analytical expression for multipole expansion coefficients in
3D ion traps

The contribution of a circular hole of radius a on a ground plane
at z = 0 (as shown in Fig. 1) to the potential on the z-axis, UdueToHole,
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Fig. 2. Axially symmetric CIT with thin endcap electrodes. (a) Trap with no holes in
the endcap electrodes and (b) the same trap with a hole of radius a0 in the endcap
electrodes.

� 1 + �

F ′′
3D(�) = − 2

(1 + �2)2
, (19)

Table 1
Locations of the planes from the centre of the trap, radii of the four holes, and field
differences for the four equivalent holes corresponding to a practical trap shown in
Fig. 3.
M. Chattopadhyay, A.K. Mohanty / Internation

s given by Eq. (19) of Chattopadhyay and Mohanty [7], as

dueToHole = (EU − EL)a
2

[
�� sign(�) − 2

�
(� arctan � + 1)�

]
, (7)

here EU and EL are the axial components of the electric field on
he z-axis above and below the ground plane on the z-axis before
he hole was introduced. (�, �, �) are oblate spheroidal coordinates
elated to the Cartesian coordinates by

= a
√

(1 + �2)(1 − �2) cos �, (8)

= a
√

(1 + �2)(1 − �2) sin �, (9)

= a ��. (10)

, �, and � have the ranges −∞< � < ∞, 0 ≤ � ≤ 1, and −� ≤ � < �. It
s discussed in Chattopadhyay and Mohanty [7], that on the z-axis,
= 1. Substituting � = 1 in Eq. (7) we get,

dueToHole = (EU − EL)a
2

[
� sign(�) − 2

�
(� arctan � + 1)

]
= (EU − EL)a

�

[
�

(
�

2
sign(�) − arctan �

)
− 1

]
= (EU − EL)a

�

[
� arctan

1
�

− 1
]

(11)

ut, on the z-axis, as � = 1, using Eq. (10) we get � = z / a. So, on the
-axis, the contribution of the hole to the potential, UdueToHole, is
iven by

dueToHole = (EU − EL)a
�

F3D(z/a), (12)

here,

3D(�) = � arctan
1
�

− 1 (13)

nd z / a is denoted by �.
For a hole at z = z0, the contribution becomes

dueToHole = (EU − EL)a
�

F3D

(
z − z0

a

)
(14)

The contribution of a hole at z = z0 to the n th multipole expan-
ion coefficient is, therefore,

n,dueToHole = Ln

(n)!˚

∂nUdueToHole

∂zn

∣∣∣∣
z=0

= Ln

(n)!˚

EU − EL

�an−1
F (n)

3D

(−z0

a

)
(15)

here F (n)
3D denotes the n th derivative of F3D. The method used for

valuating F (n)
3D is outlined in the next section, Section 3.3. The use

f Eq. (15) for determining the n th multipole expansion coefficient
n a practical trap, will now be discussed.

A trap with very thin endcaps having top-bottom symmetry is
hown in Fig. 2. Due to top-bottom symmetry for both the top as
ell as the bottom endcaps EU − EL = E1 − E0. The total contribution

f the two holes to the n th multipole expansion coefficient becomes

n,dueToHole = Ln

(n)!˚

E1 − E0

�an−1

[
F (n)

3D

(−z0

a

)
+ F (n)

3D

(
z0

a

)]
(16)

A more realistic axially symmetric trap with top-bottom sym-
etry is shown in Fig. 3. It has thick endcaps and bevelled holes.
s discussed in Chattopadhyay et al. [8] and Chattopadhyay and

ohanty [7], a hole on a thick endcap electrode may be approxi-
ated as two separate holes on two parallel infinite thin ground

lanes. For the trap shown in Fig. 3, the results of four such equiva-
ent holes on thin ground planes used to approximate the two holes
n endcap electrodes, are shown in Table 1.
Fig. 3. Axially symmetric trap with thick endcaps. (a) Trap with no holes in the end-
cap electrodes and (b) the same trap with bevelled holes in the endcap electrodes.

For thick electrodes, then, An,dueToHole can be written as

An,dueToHole = Ln

�(n)!˚

[
−E0

an−1
0

(
F (n)

3D

(−z0

a0

)
+ F (n)

3D

(
z0

a0

))

+ E1

an−1
1

(
F (n)

3D

(−z1

a1

)
+ F (n)

3D

(
z1

a1

))]
. (17)

In order to obtain An (Eq. (5)), An,dueToHole (obtained from Eq.
(17)) is added to An,noHole which is computed numerically.

3.3. Derivatives of F3D: recurrence relations for derivatives of F3D

The first three derivatives for F3D are derived as

F ′
3D(�) = arctan

1 − �
2

, (18)
Ground plane location Radius Upper field EU Lower field EL EU − EL

z = z1 a1 E1 0 E1

z = z0 a0 0 E0 −E0

z = − z0 a0 −E0 0 −E0

z = − z1 a1 0 −E1 E1
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nd

′′′
3D(�) = 8�

(1 + �2)3
. (20)

For n ≥ 2, F(n)(�) is of the form ˛n(�)/(1 + �2)
n
, where ˛n is a

olynomial of degree n − 2. To derive a recurrence formula for ˛n

e note that

˛n+1(�)

(1 + �2)n+1
= Fn+1

3D (�) = d
d�

(F (n)
3D (�))

= ˛′
n(�)

(1 + �2)n − 2n�
˛n(�)

(1 + �2)n+1
. (21)

Multiplying the left and right hand sides of Eq. (21) by
1 + �2)

n+1
we obtain the required recurrence formula:

n+1(�) = (1 + �2)˛′
n(�) − 2n�˛n(�) (22)

his recurrence starts with n = 2 for a ˛2(�) = − 2. No problems were
ncountered in the computation of derivatives up to order 12, as
eported in this paper. However, no rigorous check of the stability
or large n values was attempted.

. Multipole expansion coefficients in 2D traps

.1. Multipole expansion coefficients from potential

In a two-dimensional trap, the potential, U(	, �), can be
xpanded in terms of multipole expansion coefficients (in the polar
oordinate system) as

(	, �) = ˚

∞∑
n=0

(
	

L

)n

(An cos(n�) + Bn sin(n�)). (23)

ere ˚ is the applied potential between the x-plates and the y-
lates. In our simulations we have applied a potential of −1 / 2 to
he pair of electrodes on the y-axis, and a potential of +1 / 2 to
he other pair. 	, � are the polar coordinates. L is the normaliz-
ng length taken to be the minimum half-width between the pair
f electrodes on the x-axis in our simulations. An, Bn are the multi-
ole expansion coefficients. When there is top-bottom symmetry,
he Bn coefficients vanish. If there is also left-right symmetry then
nly the even-indexed An survive [11]. In such a case, the potential,
2D(	, �), becomes

2D(	, �) = ˚

∞∑
k=0

(
	

L

)2k

(A2k cos(2k�)). (24)

n the y-axis, 	 = | y |, and

=
{

�/2 if y > 0
−�/2 if y < 0

(25)

ence cos (2k�) = cos (± k�) =(− 1)k. Thus the potential, U2D,
ecomes

2D = ˚

∞∑
k=0

(−1)k
(

y

L

)2k

A2k (26)

By following the approach given in Eq. (1), the multipole expan-
ion coefficient A2k in 2D traps can be written as
2k = A2k,noSlit + A2k,dueToSlit (27)

n Eq. (27), the multipole expansion coefficient A2k,dueToSlit can be
omputed from the 2k th derivative of the potential with respect
o y. A2k,noSlit is obtained numerically for a given trap geometry.
Fig. 4. 2D trap with slits in thick electrodes. (a) Trap with no slits in the electrodes
and (b) Trap with bevelled slits in the electrodes.

Therefore, the even multipole expansion coefficients,
A2k,dueToSlit, can be expressed as

A2k,dueToSlit = L2k

˚

(−1)k

(2k)!
∂(2k)UdueToSlit

∂y(2k)

∣∣∣∣
y=0

. (28)

4.2. Analytical expression for multipole expansion coefficients in
2D traps

In our study, we use the analytical expression derived in Chat-
topadhyay and Mohanty [7] for the contribution of the slit to the
potential, UdueToSlit, which has the form

UdueToSlit = −EU − EL

2
ae−|
| sin �. (29)

Here EU and EL are the y components of the electric field on the
y-axis above and below the ground plane before the hole was
introduced. (
, �) are elliptic coordinates related to the Cartesian
coordinates by

x = a cosh 
 cos �, (30)

y = a sinh 
 sin �. (31)

Here 
 and � have the ranges −∞< 
 < ∞, and 0 < � < �, respectively.
On the y-axis, � = � / 2, and sinh 
 = y / a. The term e−|
|sin � in Eq.

(29) then becomes e−|
| = sinh |
| − cosh 
 = |y/a| −
√

1 + (y/a)2.
Thus on the y-axis

UdueToSlit = (EU − EL)a
2

[
−

∣∣∣y

a

∣∣∣ +
√

1 +
(

y

a

)2
]

= (EU − EL)a
2

F2D

(
y

a

)
, (32)

where

F2D(�) = −|�| +
√

1 + �2. (33)

Here � is used for y / a. For a slit at y = y0, Eq. (32) becomes

UdueToSlit = EU − EL

2
aF2D

(
y − y0

a

)
(34)

Following the treatment in the 3D case in Fig. 4, we consider a slit

on a thick electrode as a combination of two separate slits on two
parallel infinite thin ground planes. As a result, four such equivalent
slits on ground planes approximate the two slits in electrodes as
shown by Table 2.
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Table 2
Locations of the planes from the centre of the trap, half-widths, and field differences
for the four equivalent slits corresponding to a practical trap shown in Fig. 4.

Ground plane location Half-width Upper field EU Lower field EL EU − EL

y = y1 a1 E1 0 E1

y = y0 a0 0 E0 −E0

y = − y0 a0 −E0 0 −E0

y = − y1 a1 0 −E1 E1

c

A

s
w

Fig. 5. Cross-sectional view of the QIT. The geometry parameters of the QIT indicated
in the table are in mm.

Table 3
Maximum relative percentage errors for multipole expansion coefficients, A2–A12

for the QIT.

The first three derivatives of F2D are

′ �

F
v
a

The contribution of the slits to the 2k th multipole expansion
oefficient A2k,dueToSlit, is then found to be

2k,dueToSlit = L2k

˚

(−1)k

2(2k)!

[
−E0

a2k−1
0

(
F (2k)

2D

(−y0

a0

)
+ F (2k)

2D

(
y0

a0

))

+ E1

a2k−1
1

(
F (2k)

2D

(−y1

a1

)
+ F (2k)

2D

(
y1

a1

))]
. (35)

Similar to the case of the 3D traps, here too the multipole expan-

ion coefficient A2k (Eq. (27)) is obtained by summing A2k,noSlit,
hich is obtained numerically, and A2k,dueToSlit (Eq. (35)).

ig. 6. Comparison between the approximated (Eq. (5)) and actual (BEM) values of m
arying between 0% and 50% of trap dimension. The crosses correspond to values obtain
pproximation.
A2 A4 A6 A8 A10 A12

3.58 14.47 20.27 14.85 12.67 11.43

4.3. Derivatives of F2D: recurrence relations for derivatives of F2D
F2D(�) = −sign(�) + √
(1 + �2)

, (36)

ultipole expansion coefficients from A2 to A12 in the QIT for aperture dimension
ed numerically, and the continuous line corresponds to values obtained using our
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Table 4
Maximum relative percentage errors for multipole expansion coefficients A2–A12

for the CIT.

F

a

F

i
ˇ

(

ˇ

F
v
a

A2 A4 A6 A8 A10 A12

0.69 2.87 1.43 4.27 4.75 7.49

′′
2D(�) = 1

(1 + �2)3/2
, (37)

nd

′′′
2D(�) = −3�

(1 + �2)5/2
. (38)

For n ≥ 2, F (n)
2D (�) is of the form ˇn(�)/(1 + �2)

((2n−1)/2)
, where ˇn

s a polynomial of degree n − 2. To derive a recurrence formula for
n we note that

ˇn+1(�)

(1 + �2)((2n+1)/2)
= F (n+1)

2D (�) = d

d�
(F (n)

2D (�)) = ˇ′
n(�)

(1 + �2)((2n−1)/2)

− (2n − 1)�
ˇn(�)

(1 + �2)((2n+1)/2)
. (39)
Multiplying the left and right hand sides of Eq. (39) by

1 + �2)
((2n+1)/2)

we obtain the required recurrence formula as

n+1(�) = (1 + �2)ˇ′
n(�) − (2n − 1)�ˇn(�). (40)

ig. 8. Comparison between the approximated (Eq. (5)) and actual (BEM) values of m
arying between 0% and 50% of trap dimension. The crosses correspond to values obtain
pproximation.
Fig. 7. Cross-sectional view of the CIT. The geometry parameters of CIT given in the
table are in mm.

This recurrence starts with n = 2 for a ˇ2(�) = 1. As in the case of
the 3D analysis, no problems were encountered in the computation
of derivatives up to order 12. Here too, no rigorous check of the
stability for large n values was attempted.

5. Results and discussion
We now turn to verifying the validity of Eqs. (5) and (27) to
approximate the multipole expansion coefficients both in the 3D
and the 2D ion trap geometries, respectively. In order to do this,
we have chosen the QIT and the CIT to verify our expression for
the 3D traps and the LIT and the RIT to verify our expression for

ultipole expansion coefficients from A2 to A12 in the CIT for aperture dimension
ed numerically, and the continuous line corresponds to values obtained using our
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he 2D traps. We will compare the estimated multipole expansion
oefficients obtained using Eqs. (5) and (27) with those obtained
umerically. For each of the traps considered, we have plotted even
ultipole expansion coefficients from A2 to A12 for aperture dimen-

ions varying from 0% to 50% of trap dimensions. We mention that
uch plots of multipole expansion coefficients from A14 to A24 have
lso been computed and presented in Chattopadhyay [6], but those
ave been omitted here for the sake of brevity. In each of the plots,
he crosses correspond to values obtained numerically, and the con-
inuous line corresponds to values obtained using our expression.

e begin with the verification of Eq. (5) for the 3D traps and then
resent the results obtained using Eq. (27) for the 2D traps.

In each of the plots, we have also calculated the maximum rel-
tive percentage error, 
, defined by

= |ABEM − Aest|max

|ABEM|max
× 100 (41)

here ABEM is the value obtained numerically using the BEM, Aest is
he value of the coefficient obtained by our theory and the subscript,
ax, denotes the maximum error obtained.

.1. Axially symmetric (3D) traps
.1.1. The QIT
Fig. 5 presents the schematic diagram of the QIT and the dimen-

ions of the trap used in our simulations. In our simulations the
ing electrode was kept at unit positive potential and the endcap
lectrodes were kept at ground potential.

ig. 10. Comparison between the approximated (Eq. (27)) and actual (BEM) values of m
arying between 0% and 50% of trap dimension. The crosses correspond to values obtain
pproximation.
Fig. 9. Cross-section of the LIT. The geometry parameters of the LIT given in the
table are in mm.

Figs. 6 presents the results for multipole expansion coefficients
A2–A12, for the QIT. The values of the coefficients are indicated
on the y-axis and the ratio, b, of the aperture dimension to trap
dimension (waist radius of the ring electrode), a0 / r0, is indicated
on the x-axis. In these computations, z0, the distance from the cen-

tre of the trap to the endcap electrode, was recalculated for the
different aperture sizes to account for the change in this distance
when the aperture dimension was varied. The initial z0 was fixed
at 7.071 mm.

ultipole expansion coefficients from A2 to A12 in the LIT for aperture dimension
ed numerically, and the continuous line corresponds to values obtained using our
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Table 5
Maximum relative percentage errors for multipole expansion coefficients A2–A12

for the LIT.

A2 A4 A6 A8 A10 A12

6.19 6.21 22.67 15.05 16.36 14.08

Fig. 11. Cross-sectional view of the RIT. The geometry parameters of the RIT indi-
cated in the table are in mm.

Table 6
Maximum relative percentage errors for multipole expansion coefficients A2–A12

for the RIT.

Fig. 12. Comparison between the approximated (Eq. (27)) and actual (BEM) values of m
ing between 0% and 50% of trap dimension. The crosses correspond to values obtained
approximation.
A2 A4 A6 A8 A10 A12

1.75 11.91 3.35 13.04 9.92 12.69

Overall, it is seen that Eq. (5) captures the variation in the multi-
pole expansion coefficients very well for values of b between 0 and
0.5 when compared to the numerically determined values. This is
seen in all the plots, covering multipole expansion coefficients from
A2 to A12. At lower values of b, the match is very close and devia-
tions occur between the two curves only at higher values of b. A6
has the largest calculated maximum relative percentage error of
20.27% for the value of b of 0.5. Except for A2 where the maximum
relative percentage error of 3.58% was calculated at a value of b of
0.5, all other multipole expansion coefficients have maximum rela-
tive percentage error between 10% and 16%. The maximum relative

percentage errors calculated for the QIT are presented in Table 3.

5.1.2. The CIT
Fig. 7 presents the schematic diagram of the CIT geometry used

in our simulations. The dimensions of the CIT geometry are given

ultipole expansion coefficients from A2 to A12 in RIT for aperture dimension vary-
numerically, and the continuous line corresponds to values obtained using our
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ig. 13. Variation of A0 for (a) the QIT of Fig. 5, (b) the CIT of Fig. 7, (c) the LIT of Fig
umerically using BEM while the continuous line indicates the values estimated us

n the table associated with the figure. All the dimensions are in
m.
For these simulations, the ring electrode was kept at unit posi-

ive potential and the endcap electrodes at ground potential. Fig. 8
resents the variation of multipole expansion coefficients A2–A12,
or the CIT. The values of the coefficients are indicated on the y-
xis and the ratio, b, of the aperture dimension to trap dimension
radius of the ring electrode), a0 / r0, is indicated on the x-axis.

As in the case of the QIT, Eq. (5) estimates the variation of mul-
ipole expansion coefficients with b very well when compared to
he numerically determined values as seen in the plots A2–A12. For

ultipole expansion coefficients between A2 and A12, Eq. (5) esti-
ated the coefficients for the CIT with greater accuracy than in the

ase of the QIT. The other multipole expansion coefficients have
bout the same range of maximum relative percentage errors as
or the QIT. What is interesting to note is that even at a b value of
.5, Eq. (5) and the BEM output values are close in several plots.
he maximum relative percentage errors for multipole expansion
oefficients are given in Table 4.

.2. Two-dimensional (2D) traps

.2.1. The LIT

Fig. 9 presents the schematic diagram of the linear ion trap (LIT)

eometry used in our simulations. The geometry parameters are
iven in the table below the figure. In our simulations, one pair of
lectrodes (along the x-axis) was kept at a potential of +1 / 2, and
he other pair of electrodes was kept at a potential of −1 / 2.

able 7
he relative percentage errors corresponding to b for A2.

b

0.0 0.1 0.2 0.3 0.4 0.5

QIT 0.00 0.04 0.09 0.40 1.47 3.58
CIT 0.00 −0.01 −0.08 −0.14 0.02 0.69
LIT 0.00 −0.16 −0.49 −1.42 −3.28 −6.19
RIT 0.00 0.08 0.32 0.29 −0.33 −1.75
d (d) the RIT of Fig. 11. In each subfigure the crosses indicate the values computed
r theory.

Figs. 10 presents the results for multipole expansion coefficients
A2–A12 for the LIT. The values of the coefficients are indicated on the
y-axis and the ratio, b, of the aperture dimension to trap dimension
(half-width of the trap at the waist), a0 / x0, is indicated on the x-
axis. In these computations, y0, the distance from the centre of the
trap to the electrode in the y-axis was varied when the aperture
dimension was varied to account for the change in this distance
when the aperture dimension was changed. The initial y0 was fixed
at 10 mm.

Although Eq. (27) predicts the trend in the variation of multi-
pole expansion coefficients reasonably well when compared to the
values obtained using the BEM, there are deviations observed in all
the plots. For the lower order multipoles (Fig. 10), there is a consid-
erable deviation at high values of b, going up to a 22.67% deviation
at A6. Table 5 presents the relative percentage deviation for the
multipole expansion coefficients.

5.2.2. The RIT
Fig. 11 presents the schematic diagram of the rectilinear ion trap

(RIT) geometry used in our simulations. Its geometry parameters
are specified in the table below the figure. In our simulations, one
pair of electrodes (along the x-axis) was kept at a potential of +1 / 2,
and the other pair of electrodes was kept at a potential of −1 / 2.

Figs. 12 present the results for multipole expansion coefficients
A2 to A12 for the RIT. The values of the coefficients are indicated
on the y-axis and the ratio, b, of the aperture dimension to trap
dimension (half-width of the trap in the x-axis), a0 / x0, is indicated
on the x-axis.

An inspection of Fig. 12 indicates a good match between the
values predicted by Eq. (27) and the BEM. The relative percentage
errors for multipole expansion coefficients are given in Table 6.
5.3. Quadrupole expansion coefficient A2

We turn to study how Eqs. (5) and (27) predict the leading
multipole expansion coefficient, A2, in comparison with the val-
ues obtained by the BEM. This has been done for different ranges
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Fig. 14. The symmetric excitation of a trap can be considered as a superposition of the conventional excitation case and an excitation in which all the electrodes of the trap
are at a constant potential.

Table 8
The multipole excitation coefficients for different excitations of the CIT.

Multipole expansion coefficient Symmetric excitation Conventional excitation Same-potential excitation

A0 0.21457707 0.71453932 −0.49996225
A2 −0.71750510 −0.71754998 0.00004488
A4 −0.11143501 −0.11138806 −0.00004695
A6 0.12851469 0.12849740 0.00001728
A 0.01450078 0.01440797 0.00009281
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A10 −0.02319540
A12 0.00357666

f b to give an idea of how well our theory predicts the multipole
xpansion coefficients for different aperture sizes. Also, in order to
et an idea on whether our theory under-predicts or over-predicts
n comparison to the BEM, we have removed the modulus sign in
q. (41). The results are presented in Table 7.

It is evident that our theory performs reasonably well for most
ases, the exceptions being the higher values of b for the QIT and
he LIT, both of which have curved-surface electrodes.

.4. Multipole expansion coefficient A0

Finally, we discuss the variation of the multipole expansion coef-
cient A0 with aperture size. Fig. 13 shows how A0 changes with
perture size for the four traps discussed earlier. It is seen that our
heory does not predict the change in A0 very well. This is due to the
act that the presence of the ring electrode and the truncation in the
ndcaps are not accounted for by our theory. It should, however, be
oted that A0 does not contribute to the field inside the trap, but is
f importance when ions are transferred from one quadrupole trap
o another.

.5. Choice of potentials applied to the electrodes

In response to a query by an anonymous reviewer, we briefly
onsider what the multipole expansion coefficients would be if we
hoose the symmetric excitation of a 3D trap instead of the con-
entional excitation. In the symmetric excitation, the endcaps are
eld at a potential of −˚ / 2 while the ring is held at a potential of
/ 2. This is in contrast to the conventional excitation where the

ndcaps are grounded while the ring is held at a potential of ˚.
The symmetric excitation can be considered as a superposition

f the conventional excitation and a constant-potential excitation
n which all the electrodes are held at −˚ / 2. Fig. 14 shows the three
xcitations for ˚ = 1. Since most traps are constructed in such a
ay that the centre of the trap is well shielded from the outside by

he electrodes, the constant-potential excitation produces a very

eak field inside the trap. The potential due to this excitation is
early equal to the applied potential inside the trap. As a result, the
otential inside the trap due to a constant-potential excitation only
as very little of the multipole components other than the constant
omponent A0. We consider the CIT of Fig 7 with a hole radius of
−0.02325915 0.00006375
0.00353402 0.00004264

1 mm (10% of the ring inner radius). Table 8 shows the multipole
expansion coefficients for this CIT for the three types of excitations.
It is seen that A0 for the symmetric excitation is less by nearly 0.5
than the A0 for the conventional excitation. The other multipole
expansion coefficients change only marginally.

6. Concluding remarks

This study developed approximate analytical expressions for
calculating multipole expansion coefficients as a function of the
size of the aperture in the electrodes of axially symmetric (3D)
and two-dimensional traps. These expressions for multipole expan-
sion coefficients (Eqs. (5) and (27)) were obtained by superposing
two terms, one obtained numerically for a trap with no aper-
tures, An,noAperture, and the other derived from the derivatives of the
potential within the trap. The expression for the potential within
the trap described by Chattopadhyay and Mohanty [7] have been
used in the present study.

Two 3D ion traps and the two 2D ion traps having electrodes
of finite thickness have been used for verifying the utility of the
expressions we have derived. The 3D traps investigated include
the QIT and the CIT; the 2D traps investigated are the LIT and
the RIT. The verification was done by comparing multipole expan-
sion coefficients obtained using our expression with those obtained
numerically using the BEM for the respective traps. Plots have been
presented for even multipole expansion coefficients between A2
and A12, and for aperture sizes up to 50% of the characteristic dimen-
sion of the trap.

Our expression captures the trend of the variation of multipole
expansion coefficients in all the traps very well, with predictions
for the CIT and RIT being better than for the curved-surface elec-
trode QIT and LIT. This is to be expected since the theory developed
here used an infinite thin ground plane as its starting point. The
numerical values obtained from our expression also closely match
the numerically obtained value for lower aperture sizes, and a devi-
ation is seen only at higher values of aperture size. In many cases
where the relative percentage errors are large, these have to be

viewed in the context of the nominal value of the multipole expan-
sion coefficient itself being very small. Finally, it was also seen that
the theory presented in this study works particularly well for the
multipole A2, which is a multipole expansion coefficient often used
to study trap performance.
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At this point, we feel there is scope for further improving the the-
ry for getting a better match of multipole expansion coefficients
o values obtained by the BEM. For the 3D traps, in particular, one
spect that we feel requires greater attention is the investigation of
he role of the ring electrode. In some preliminary investigations,
e did find that a better match was obtained when the height of

ing electrode in the CIT was reduced. What this implies will require
urther investigations. For the 2D traps, as also for the 3D traps, we
eel a limitation of our theory stems from our starting assumption
hat the electrodes are infinite in size. This approach may require a
eview. If a new theory for finite size electrodes becomes available,
he approach we have adopted in this study, that of superposing

ultipoles expansion coefficients in traps with no apertures to
oefficients contributed by the apertures, should provide a more
ccurate formulation.
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